

Inscribed Angle Properties: Consider the following diagram an inscribed angle of the circle center at A.

Consider the inscribed angle $\Varangle C B D$ which intercepts arc $\widehat{D C}$ that measures 70°.

Since the central angle $\Varangle C A D$ intercepts arc $\widehat{D C}$ then $m \Varangle C A D=70^{\circ}$.

Triangle $\triangle \mathrm{DAB}$ is isosceles because the legs are radii of the circle. The measure of angle $m \Varangle D A B=110^{\circ}$ since it forms a linear pair with $\Varangle C A D$.

The based angles of $\triangle D A B$ must be congruent and the interior angles of triangle must sum to 180°. So, $110+x+x=180$

In a similar fashion using addition or subtraction, it can be shown this idea extends to any inscribed angle.
"An inscribed angle's measure is exactly half of the arc measure that it intercepts."
Find the most appropriate value for ' x ' in each of the diagrams below. (Assume point ' A ' is the center of the circle.)

2.

3.

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume point ' A ' is the center of the circle.)
4.

5.

6.

8.

9.

11.

12.

