Tangent Line Angles

Consider the tangent line $\overleftrightarrow{D C}$ and the ray $\overrightarrow{C B}$ which intercepts arc $\widehat{B C}$ and has a measure of x°.

Draw an auxiliary segment $\overline{A B}$ and $\overline{A C}$ to create an isosceles triangles. We know that $m \measuredangle A=x^{\circ}$ as a central angle and the interior angles of $\triangle A B C$ sum to 180°.

So, $m \Varangle B+m \Varangle C=180^{\circ}-x$
Also, $m \Varangle B=m \Varangle C$ because they are the base angles of an isosceles triangle. So, $m \npreceq B+m \Varangle B=180^{\circ}-x$ which simplifies: $2 \cdot m \nleftarrow B=180^{\circ}-x$ or $m \Varangle B=\frac{180^{\circ}-x}{2}$

Finally, $\overline{A C}$ must be perpendicular to $\overleftrightarrow{D C}$ since it is tangent of the circle. The angle $\Varangle D C B \& \Varangle A C B$ must sum to 90°.

So, we can find

$$
m \Varangle D C B=90-\frac{180^{\circ}-x}{2}
$$

which simplifies:

$$
m \npreceq D C B=\frac{x}{2}
$$

"The measure of an angle formed by a tangent and a chord drawn to the point of tangency is exactly $1 / 2$ the measure of the intercepted arc."

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume CE is tangent to the circle.)
1.

2.

3.

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume $C E$ is tangent to the circle.)

(You may assume DF is a diameter.)
5.

6.

$x=$

Intersecting Chords Interior Angles

Consider the intersecting chords $\overline{B E}$ and $\overline{F C}$ that intercept the arcs $\widehat{C B}$ and $\widehat{F E}$.

Draw an auxiliary segment $\overline{B F}$ to create the inscribed angles that we know are half of the intercepted arc. So, $m \Varangle F B E=\frac{z^{\circ}}{2}$ and $m \Varangle B F C=\frac{y^{\circ}}{2}$

Since triangles interior angles sum to 180°. So we can subtract the 2 angles of triangle $\triangle \mathrm{DBF}$ to find angle $m \Varangle B D F=180^{\circ}-\frac{y^{\circ}}{2}-\frac{z^{\circ}}{2}$

Finally, since $\Varangle F D E$ forms a linear pair with $\Varangle B D F$ we can subtract from 180° to find: $m \npreceq F D E=180^{\circ}-\left(180^{\circ}-\frac{y^{\circ}}{2}-\frac{z^{\circ}}{2}\right)$ which simplifies to $m \nleftarrow F D E=\frac{y^{\circ}+z^{\circ}}{2}$
"The measure of an angle formed by two intersecting chords of the same circle is exactly $1 / 2$ the measure of the sum of the two intercepted arcs."

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume point ' A ' is the center of the circle.)

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume point ' A ' is the center of the circle.)

(You may assume BE is a diameter.)

Consider the rays $\overrightarrow{B D}$ and $\overrightarrow{B F}$ which intercepts arc $\widehat{C E}$ and $\widehat{F D}$ which measure a° and b° respectively.

Draw an auxiliary segment $\overline{E D}$. We know that $m \Varangle D E F=\frac{b^{\circ}}{2}$ and $m \Varangle C D E=\frac{a^{\circ}}{2}$ because each is an inscribed angle.

Finally, $m \Varangle D E B=180^{\circ}-\frac{b^{\circ}}{2}$ since the two angles at point E forma linear pair.
Furthermore, $m \Varangle B=180^{\circ}-\left(180^{\circ}-\frac{b^{\circ}}{2}\right)-\frac{a^{\circ}}{2}$ since a triangle's interior angles sum to 180° and that would simplify to $m \Varangle B=\frac{(b-a)^{\circ}}{2}$.
"The measure of an angle formed on the exterior of a circle by two intersecting secants of the same circle is exactly $1 / 2$ the measure of the difference of the two intercepted arcs."

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume point ' A ' is the center of the circle.)

Find the most appropriate value for ' x ' in each of the diagrams below. (Assume point ' A ' is the center of the circle.)

$\binom{$ You may assume EC and DE }{ are tangent to the circle. }

$\binom{$ You may assume DB is }{ tangent to the circle. }

```
x=
```


